Chapitre 6

DÉVELOPPEMENT LIMITÉ

Définition 11

Soit n un élément de $\mathbb{N}(n \in \mathbb{N})$, On appelle développement limitée de la fonction f au voisinage de 0 à l'ordre n, s'il existe :

- un polynôme P de dégrée au plus n
- une fonction R telle que $\lim_{x\to 0} R(x) = 0$

Au voisinage de 0: f(x) = P(x) + R(x)

P(x) est appelé partie principale ou partie régulière de f.

R(x) est appelé le reste ou terme complémentaire.

 $DL_n(0) =$ Développement limité à l'ordre n au voisinage de 0.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + R(x)$$

*
$$R(x) = x^n \epsilon(x)$$
 où $\lim_{x \to 0} \epsilon(x) = 0$.

$$DL_n(0): f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \epsilon(x) \text{ avec } \lim_{x \to 0} \epsilon(x) = 0.$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}(\text{sont des r\'eels})$

Remarque 17

- \star Pour déterminer le $DL_n(x_0)$: on pose $X=x-x_0$
 - $DL_n(0)$ pour la variable X: $f(x) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + O(X^n)$
 - $DL_n(x_0)$ pour la variable x: $f(x) = a_0 + a_1(x x_0) + a_2(x x_0)^2 + \dots + a_n(x x_0)^n + O((x x_0)^n)$
- * Pour déterminer le $DL_n(\infty)$: On pose $X = \frac{1}{x}$
 - $DL_n(0)$ pour la variable X: $f(x) = a_0 + a_1 X + a_2 X^2 + \dots + a_n X^n + O(X^n)$
 - $DL_n(\infty)$ pour la variable x: $f(x) = a_0 + a_1 \frac{1}{x} + a_2 (\frac{1}{x})^2 + \dots + a_n (\frac{1}{x})^n + 0((\frac{1}{x})^n)$

6.1 Développement limité de Taylor-Young

$$DL_n(0): f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + 0(x^n).$$

Déterminons le
$$DL_3(0)$$
 pour la fonction $f(x) = \exp(x)$

$$DL_3(0): f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + 0(x^3)$$

$$f(x) = \exp(x) \Rightarrow f(0) = 1$$

$$f'(x) = \exp(x) \Rightarrow f'(0) = 1$$

$$f^{"}(x) = \exp(x) \Rightarrow f^{"}(0) = 1$$

$$f^{(3)}(x) = \exp(x) \Rightarrow f^{(3)}(0) = 1$$

Ce qui donne
$$DL3(0)$$
: $\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + 0(x^3)$

En procédant de la même façon, on tro

$$DL3(0): g(x) = \ln(1+x) \Rightarrow \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + 0(x^3)$$

DL3(0):
$$g(x) = \ln(1+x) \Rightarrow \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + 0(x^3)$$

DL3(0): $h(x) = \sqrt{1+x} \Rightarrow \sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} + 0(x^3)$.

6.2 **Opération sur les développement limités**

Soit f et g deux fonctions admettant des développements limités d'ordre n au voisinage de 0 de parties régulières respectives P et Q.

$$f(x) = P(x) + 0(x^n)$$

$$g(x) = Q(x) + 0(x^n)$$

6.2.1 Combinaison

La combinaison $\alpha f + \beta g$; $\alpha, \beta \in \mathbb{R}$ admet un développement limité d'ordre n au voisinage de 0 de partie régulière $\alpha P + \beta Q$

xemple 36

$$DL_n(0) \text{ de } f(x) = 2e^x - 3ln(1+x);$$

$$f(x) = 2\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\right) - 3\left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) + 0(x^3)$$

$$f(x) = 2 - x + \frac{5x^2}{2} - \frac{2x^3}{3} + 0(x^3).$$

Remarque 18

Par identification, on retrouve les valeurs de f(0), f'(0), f''(0), $f^{(3)}(0)$ par la formule de Taylor-Young:

$$\begin{cases} f(0) = 2 \\ f'(0) = -1 \\ \frac{f''(0)}{2} = \frac{5}{2} \\ \frac{f^{3}(0)}{6} = -\frac{2}{3} \end{cases} \Rightarrow \begin{cases} f(0) = 2 \\ f'(0) = -1 \\ f''(0) = 5 \\ f'''(0) = -4 \end{cases}$$

6.2.3 Le quotient

Si $Q(0) \neq 0$ alors le quotient $\frac{f}{g}$ admet un développement limité d'ordre n au voisinage de 0 de partie régulière obtenue par la division suivant les puissances croissante de x à l'ordre n de $\frac{P}{Q}$ (P par Q)

Exemple 38

$$DL_3(0), f(x) = \frac{e^x \ln(1+x)}{\sqrt{1+x}}$$

$$e^x \ln(1+x) = x + \frac{x^2}{2} + \frac{x^3}{3} + 0(x^3)$$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{x^2}{8} + \frac{x^3}{16} + 0(x^3)$$

Division suivant les puissances croissantes de x à l'ordre 3:

6.2.4 Composition

Si f et g admettent des d.l. d'ordre n au voisinage 0 de parties régulières respectives P et Q et si la valuation de Q est nulle (i.e Q(0) = 0) alors $f \circ g$ admet un d.l. d'ordre n dont la partie régulière est obtenue en tronquant au degré n le polynôme $P \circ Q$.

 $DL_3(0)$ d'ordre 3 au voisinage de 0 de $f(x) = sh[\ln(1+x)]$

6.2.5 Intégration

Si f est dérivable dans un voisinage de 0 et si f' admet un d.l. d'ordre n au voisinage de 0

$$f'(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$$

alors f admet un d.l. d'ordre n+1 au voisinage de 0 obtenu par intégration terme à terme:

$$f(x) = f(0) + a_0 x + \frac{1}{2} a_1 x^2 + \frac{1}{3} a_2 x^3 + \dots + \frac{1}{n+1} a_n x^{n+1} + o(x^{n+1}).$$

.l. d'ordre 5 au voisinage de 0 de $f(x) = \arctan\left(\frac{1+x}{1-x}\right)$.

Trouvons d'abord le développement limité à l'ordre 4 de la dérivée $f'(x) = \frac{1}{1+r^2}$:

$$DL_4(0)$$
 $f'(x) = 1 - x^2 + x^4 + 0(x^4)$

Par intégration on a :
$$f(x) = f(0) + x - \frac{x^3}{3} + \frac{x^5}{5} + 0(x^5)$$
 or $f(0) = \arctan(1) = \frac{\pi}{4}$;

$$DL_5(0)$$
 $f(x) = \frac{\pi}{4} + x - \frac{x^3}{3} + \frac{x^5}{5} + 0(x^5).$

6.3 **Applications**

6.3.1 Calcul des limites

1 1
$$v^2 - c$$

$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^2 \cdot \sin^2(x)}$$

$$DL_4(0): \quad \sin(x) = x - \frac{x^3}{6} + 0(x^4) \Rightarrow \sin^2(x) = \left(x - \frac{x^3}{6}\right)^2 + 0(x^4)$$

$$\sin^2(x) = x^2 - \frac{x^4}{3} + 0(x^4)$$

$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right) = \lim_{x \to 0} \frac{x^2 - \sin^2(x)}{x^2 \sin^2(x)} = \lim_{x \to 0} \frac{x^2 - \left(x^2 - \frac{x^4}{3}\right) + 0(x^4)}{x^2 \left(x^2 - \frac{x^4}{3}\right) + 0(x^4)} = \lim_{x \to 0} \frac{\frac{x^4}{3} + 0(x^4)}{x^4 + 0(x^4)}$$

$$= \lim_{x \to 0} \frac{x^4 \left(\frac{1}{3} + 0(1)\right)}{\frac{1}{3} \left(x^2 - \frac{x^4}{3}\right) + 0(x^4)}$$

$$= \lim_{x \to 0} \frac{x^4 \left(\frac{1}{3} + 0(1)\right)}{x^4 \left(1 + 0(1)\right)}$$

$$= \lim_{x \to 0} \frac{\left(\frac{1}{3} + 0(1)\right)}{\left(1 + 0(1)\right)}$$

$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right) = \frac{1}{3}$$

* calcul de la limite : $\lim_{x\to 0} \frac{\ln(1+2x^2)}{x^2}$

DL2(0): $ln(1+y^2) = y - \frac{y^2}{2} + 0(y^2)$ avec $y^2 = 2x^2$: on a $ln(1+2x^2) = 2x^2 - 2x^4 + 0(x^4)$

$$\lim_{x \to 0} \frac{\ln(1+2x^2)}{x^2} = \lim_{x \to 0} \frac{2x^2 - 2x^4 + 0(x^4)}{x^2}$$
$$= \lim_{x \to 0} (2 - 2x^2 + 0(x^2))$$

$$\lim_{x \to 0} \frac{\ln(1 + 2x^2)}{x^2} = 2$$

Tangente 6.3.2

Soit $DL_n(0)$: $f(x) = a_0 + a_1 x + a_p x^p + \dots + a_n x^n + 0(x^n)$ où a_p est le premier coefficient d'ordre $p \ge 2$ non nul.

La droite (T): $y = a_0 + a_1x$ représente la tangente à C_f en 0.

* La position relative de cette tangente et de la courbe C_f est déterminée par le signe du monôme $a_p x^p$

$$DL_3(0): \quad f(x) = 1 - \frac{1}{2}x - \frac{3}{4}x^3 + 0(x^3)$$

L'équation de la tangente en x = 0 (T): $y = 1 - \frac{1}{2}x$.

La position de (T) et C_f au voisinage de 0 :

Signe de $-\frac{3}{4}x^3$;

х	$-\infty$		0		$+\infty$
$-\frac{3}{4}x^{3}$		+	0	_	

*
$$\forall x < 0 \text{ on } a : -\frac{3}{4}x^3 > 0 \Rightarrow (C_f)/(T)$$

* $\forall x > 0 \text{ on } a : -\frac{3}{4}x^3 < 0 \Rightarrow (T)/(C_f)$

*
$$\forall x > 0 \text{ on } a : -\frac{3}{4}x^3 < 0 \Rightarrow (T)/(C_f)$$

Asymptote oblique 6.3.3

Si f admet un développement limité au voisinage de ∞ de la forme : f(x) = $ax + b + \frac{c_p}{x^p} + 0(\frac{1}{x^p})$ alors la droite d'équation y = ax + b est une asymptote oblique à C_f à l'infini (∞) . Dans la pratique on pose :

$$t = \frac{1}{x}$$
 quand $x \to \infty$; $t \to 0$.

On cherche $DL_n(0)$: $tf(\frac{1}{t}) = a + bt + c_p x^p + 0(x^{p+1})$

Exercice d'application 1

Soit f la fonction définie sur \mathbb{R} par $\begin{cases} \frac{x}{1 - e^x} & \text{si } x > 0 \\ \frac{x}{1 - (1 - x)} & \text{si } x < 0 \end{cases}$

- 1. Déterminer le domaine de définition de f.
- 2. Montrer un prolongement par continuité en 0 noté g que l'on précisera.
- 3. Étudier la dérivabilité de g en 0
- 4. Déterminer $DL_2(0)$ de g.

Exercice d'application 2

- 5. En déduire que g admet une tangente (T) en 0.
- 6. Étudier la position relative de cette tangent avec la courbe représentative de g au voisinage de 0.

Solution 8

1. Domaine de définition:

$$D_{f} = \{ \forall x \in \mathbb{R} / (1 - e^{x}) \neq 0; \quad (1 - x) > 0 \text{ et } ln(1 - x) \neq 0 \}$$

$$1 - e^{x} \neq 0 \Rightarrow e^{x} \neq 1 \Rightarrow x \neq 0$$

$$1 - x > 0 \Rightarrow x < 1 \text{ or } x < 0$$

$$ln(1 - x) \neq 0 \Rightarrow 1 - x^{n} \text{ ot } = 1 \Rightarrow x \neq 0$$

$$D_{f} = \mathbb{R}^{*} = \mathbb{R} - \{0\}$$

2. $0 \in D_f$

* Cherchons la limite de 0 :

$$\lim_{x \to 0_{<}} f(x) = \lim_{x \to 0_{<}} \frac{x}{1 - e^{x}} = \lim_{x \to 0_{<}} \frac{1}{-e^{x}} = -1$$

$$\lim_{x \to 0_{<}} f(x) = \lim_{x \to 0_{<}} \frac{x}{ln(1 - x)} = \lim_{x \to 0_{<}} \frac{1}{\frac{-1}{1 - x}} = -1$$

Par conséquent :
$$\lim_{x\to 0} f(x) = -1$$
 donc : $g(x) = \begin{cases} f(x) \text{ si } x \in D_f \\ -1 \text{ si } x = 0 \end{cases}$

3. Dérivabilité de g en 0 :

$$\lim_{x \to 0_{<}} \frac{g(x) - g(0)}{x} = \lim_{x \to 0_{<}} \frac{\frac{x}{\ln(1-x)} + 1}{x}$$

$$= \lim_{x \to 0_{<}} \frac{x + \ln(1-x)}{x \ln(1-x)}$$

$$= \frac{1}{2}$$

$$\lim_{x \to 0_{<}} \frac{g(x) - g(0)}{x} = \frac{1}{2}$$

$$\lim_{x \to 0_{>}} \frac{g(x) - g(0)}{x} = \lim_{x \to 0_{>}} \frac{\frac{x}{1 - e^{x}} + 1}{x}$$
$$\lim_{x \to 0_{>}} \frac{g(x) - g(0)}{x} = \frac{1}{2}$$

Comme : $\lim_{x \to 0} \frac{g(x) - g(0)}{x} = \lim_{x \to 0} \frac{g(x) - g(0)}{x} = \frac{1}{2}$ alors g est dérivable en 0.

FDS-UL

Solution 9

4)
$$\Delta L_2(0)$$

•
$$x > 0, g(x) = \frac{x}{1 - e^x} = \frac{x}{1 - (1 + x + \frac{x^2}{2} + \frac{x^3}{6} + 0(x^3))} = \frac{-1}{1 + \frac{x}{2} + \frac{x^2}{6} + 0(x^2)}$$

pour
$$x > 0$$
, $g(x) = -1 + \frac{x}{2} - \frac{x^2}{12} + 0(x^2)$

•
$$x < 0$$

$$g(x) = \frac{x}{\ln(1-x)} = \frac{x}{-x + \frac{x^2}{2} - \frac{x^3}{3} + 0(x^3)} = \frac{-1}{1 - \frac{x}{2} + \frac{x^2}{3} + 0(x^2)}$$

Pour
$$x < 0$$
, $g(x) = -1 + \frac{x}{2} + \frac{x^2}{12} + 0(x^2)$

$$g(x) = \begin{cases} -1 + \frac{x}{2} - \frac{x^2}{12} + 0(x^2), x > 0\\ -1 + \frac{x}{2} + \frac{x^2}{12} + 0(x^2), x < 0 \end{cases}$$

5) Tangente de g en 0 :

$$(T): y = -1 + \frac{x}{2}$$

6) · Pour
$$x > 0$$
, $-\frac{1}{12}x^2 < 0 \Longrightarrow (T)/\mathscr{C}f$

· Pour
$$x < 0, \frac{1}{12}x^2 > 0 \Longrightarrow \mathscr{C}f/(T)$$

